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The wave equation is one of the earliest projects I tried to figure out. I
started investigating it during my Freshman year as a stepping stone toward
Maxwell’s Equations. This write-up describes a model I created that involves
breaking an initial condition into components, each defined only along a sin-
gle axis. It is the simplest general solution I’ve created so far.

We will be investigating and finding solutions to the wave equation:

□ ϕ = 0 or
∂2ϕ

∂t2
= c2∇2ϕ

This problem was a priority of mine, primarily because it was fun, but
also because the wave equation turns out to be equivalent to a surprising
number of other interesting PDEs. A good example of this is the Klein
Gordon equation. Say we have a field ϕ that satisfies the wave equation in
N dimensional space (space not spacetime).

∂2ϕ

∂t2
=
∂2ϕ

∂x21
+
∂2ϕ

∂x22
+ · · ·+ ∂2ϕ

∂x2N

We can invent a new field ψ that depends only on N-1 of the coordinates.
It is defined:

ϕ(x1, x2, · · ·xN) = ψ(x2, · · ·xN)eimx1

If we plug this into our equation for ϕ, we can get an expression for ψ.

∂2ψ

∂t2
eimx1 =

(
∂2

∂x21
ψeimx1

)
+
∂2ψ

∂x22
eimx1 + · · ·+ ∂2ψ

∂x2N
eimx1
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Expanding this, we find that ψ follows the Klein Gordon Equation.

∂2ψ

∂t2
=
∂2ψ

∂x22
+ · · ·+ ∂2ψ

∂x2N
−m2ψ

Before we solve the entire wave equation, we can start with the one di-
mensional version. We see that it is:(

∂2

∂t2
− c2

∂2

∂x2

)
ϕ = 0

We can factor this expression into two terms. It is worth noting that
this is not the way I originally solved this equation. When I first solved it, I
Fourier Transformed it in space, but not in time, which made it a harmonic
oscillator. I solved that equation, then reversed the Fourier Transform. As
it is, we will use a simpler method I discovered later.(

∂2

∂t2
− c2

∂2

∂x2

)
ϕ =

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
ϕ = 0

Only one of the two factors, when operated on ϕ, needs to yield zero for
this equation to be satisfied. This gives us two equations, and their solutions
can be written in terms of two arbitrary functions: f : R → R and g : R → R.(

∂

∂t
− c

∂

∂x

)
ϕL → ϕL(x, t) = f(x+ ct)

(
∂

∂t
+ c

∂

∂x

)
ϕR → ϕR(x, t) = g(x− ct)

Because of linearity, ϕ can be written as a sum of these two solutions.

ϕ(x, t) = f(x+ ct) + g(x− ct)

Now we can move on to the N dimensional wave equation. The obvious
solution is to write it as a Fourier Transform. For a real field, this version of
the solution would have the form:

ϕ(x⃗, t) =

∫
α(k⃗)ei(k⃗·x⃗+t∥k⃗∥) + α(k⃗)e−i(k⃗·x⃗+t∥k⃗∥)dNk
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This expression can be very useful. I’ve used it extensively when working
with quantum fields, but it is not the most satisfying answer. After all, it
requires N different integrals to evaluate the expression, not to mention at
least N more to set the initial conditions.

We are going to notice something else. If a function depends only on one
of the x’s, it must satisfy the one dimensional wave equation as all the other
derivatives would be zero. Likewise, since the wave equation is rotationaly
symmetric, a function that depends only on any unit vector dotted with
position must follow the one dimensional wave equation with respect to a
directional derivative along that unit vector. Any linear combination of these
vectors would also need to satisfy the wave equation. This gives us a form for
ϕ: basically just a superposition of plane waves fn moving along a collection
of corresponding unit vectors αn.

ϕ(x⃗, t) =
∑
n

fn(x⃗ · α̂n − ct)

The question now becomes, how do we find the set of fn given an initial
condition? Basically we want an object F defined.

if g(α̂, r) = F[f(x⃗)](α̂, r) then f(x⃗) =

∫
g(α̂, x⃗ · α̂)dN−1α

I had a small hint with this one. One of the SoME3 submissions was
about ”string art” (creating pictures by connecting strings at the edges of a
circle), and involved solving a problem similar to this one. The person in the
video solved it by just brute-forcing the problem in a way that could not be
done symbolically. However, at the very end, he mentioned that he now had
a new algorithm involving the Fourier Transform. He did not explain how it
worked (honestly, I was glad, as I wanted to figure it out myself), but it gave
me a place to start as I knew the Fourier Transform would be involved.

Since we know the solution will somehow involve the Fourier Transform,
we can begin by writing f in terms of its Fourier Transform, then manipulate
it to try and get it into a form similar to the equation above.

f(x⃗) = (2π)−
N
2

∫
f̂(k⃗)e−ik⃗·x⃗d3k

f(x⃗) =

∫
(2π)−

N−1
2

1√
2π

∫ [
f̂(k̂, ∥k∥) exp

(
−i∥k∥(k̂ · x⃗)

)]
∥k∥N−1d∥k∥dN−1k̂
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This has the form of an integral over a unit vector k̂ of a function that
depends on x⃗ only through x⃗ · k̂. We can use this to write out an expression
for F!

F[f(x⃗)] = F−1

∥k⃗∥
[Fx[f(x⃗)](k⃗)](k̂, r)

This means all we have to do to solve the wave equation is evaluate F on
our initial condition to get the fn, then add them all back together in the
right way to get ϕ. A few moments of thought will show that we actually
have the same total number of integrals to perform in this process as in the
original Fourier Transform method. That said, this solution still does have
an advantage. We’ve shifted one of our 2N integrals from the evaluation to
setting the initial conditions. We will often want to evaluate a solution at
multiple points in time to get a feel for how it evolves. This solution saves
us one integral for each evaluation, save the first one!

My quest to solve this problem has taught me more than I could ever
have imagined at the start. When I began, I barely understood the difference
between an ODE and a PDE. Now I have homemade methods for solving
both. It sometimes felt like I was approaching this with a strategy that valued
quantity over quality. I invented dozens of methods, hoping that one might
just apply to the wave equation. This process has left me with tools to solve
all kinds of other PDEs. I don’t consider this project complete. Though this
decomposition method is the simplest I’ve found so far, I’m hopeful that a
simpler solution exists. A lot of my more recent work on the wave equation
and other PDEs revolves around creating new number systems in which they
can be more easily solved: trying to generalize the fact that an arbitrary
function of a complex number reproduces Laplace’s Equation in 2D to more
equations and corresponding number systems. I’ve used this to find exact
solutions for all 2D PDEs where the total number of derivatives on each
term is constant. I’m also exploring ways to extend this method to more
complex PDEs and in more dimensions.
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