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This STEM portfolio contains 5 write-ups showcasing some of my physics and math work 
over the last three years. I’ve been studying quantum mechanics, quantum field theory, 
partial diDerential equations, and some general relativity. This work has been almost 
completely independent. I’ve learned most of it through textbooks, google searches and a 
lot of freewheeling experimentation. 
 
Much of what I’ve learned has come from “The Theoretical Minimum,” a series of books and 
recorded lectures by Leonard Susskind. As I read and watched TTM, I challenged myself to 
never go on to the next section without mastering the math behind it. Several of the write-
ups here are my attempts to expand on topics Susskind mentioned in passing, but never 
fully explained. 
 
I absolutely love deriving these equations. I’ve always been amazed that with just a 
notebook and a pencil, we can work out the properties of phenomena in the world around 
us that we’ve never even seen. It feels like magic. 
 
Other than a little help from my high school physics teacher to get me up to speed on 
LaTeX, I’ve created these write-ups entirely on my own. I don’t have any experience writing 
scientific papers but have done my best to convey my process and results. 
 
I’ve been TA’ing math and physics and founded the math club at my school, but I haven’t 
found anybody with a strong enough interest in theoretical physics to bounce ideas oD. I’m 
looking forward to attending a school where I have the possibility of studying advanced 
physics and doing some research as an undergraduate, joining a community of people 
whose passion for physics and math is as strong as mine. 
 



Modeling Relativistic Strings as Level Curves

Max Orton

Fall 2024

My work with Relativistic Strings is my most recent project. In The The-
oretical Minimum recorded lectures on String Theory, Susskind used param-
eterized strings, and worked in the lightcone frame. I wanted to create a
manifestly relativistic model that could handle multiple strings at the same
time. This write-up is the result.

Our goal in the following is to find a way to describe 1+1 dimensional
structures consistent with special relativity. We will begin in 2+1 dimensions,
then generalize to higher dimensions and discuss possible ways to quantize
our system.

Our starting point will be the fact that for a collection of relativistic
strings, the action is proportional to the total surface area of the collection.
Though later we will find a more explicit form for the action, for now we can
write:

S = kA

Where S is the action, A is the total surface area, and k is a constant to
maintain dimensional consistency. It’s worth noting that k will need units
of action divided by area which means that k is a force or, in the same vein,
a tension. This works because, though area normally has units of length
squared, a string moving slower than light will instead have its area measured
in units of length time. When I first noticed this, I was very excited, but
honestly, I think this result might just be a coincidence. We will encounter
a better physical interpretation for k later on.

There is only so much we can do with the action written in so abstract
a form, so our next step will be to write it explicitly in terms of the model
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we are using to describe the strings. We will be modeling the strings as the
level curves of, in general, D-1 functions in D+1 dimensional space. The
advantage to this approach is that multiple strings and even interactions
between strings are baked into the model’s structure and do not have to be
added later.

2+1 dimensional space is the simplest, non-trivial example, so we will
begin there. To do this, we will define a function ϕ(X) such that at each
point X in space time where a string exists:

ϕ(X) = 0

Our next goal will then be to find the surface area of the level curves of
this function. We only want points where the function is zero to contribute,
so we can try including a delta function of the field. We multiply this by an as
yet undetermined function of the derivatives of the field. It is only a function
of the derivatives of ϕ, because everywhere the integrand is non-zero, the
field is zero.

A[ϕ] =

∫ tf

ti

∫
Ω

Λ(∂ϕ)δ(ϕ) dA dt

We can now try to find the form of Λ. If the field didn’t change over time
(ϕ̇ = 0), then our integral would simplify:

A[ϕ] = (tf − ti)

∫
Ω

Λ(∇ϕ)δ(ϕ)dA

The integral is evaluated now only on a single time slice and can be seen
as the total length of the collection of strings on that slice. That, multiplied
by our change in time (tf − ti = ∆t), gives us the total relativistic surface
area of the strings.

Next, we will break up space into many small regions {Ωn} and assign
each one a point x⃗n ∈ Ωn. Each of the Ωn is picked to be small enough that
ϕ is approximately linear within the region.

ϕ(x⃗) ≈ ϕ(x⃗n) + (x⃗− x⃗n) · ∇⃗ϕ(x⃗n) ∀x ∈ Ωn

We can rewrite our integral as a sum over the individual regions. We will
also define shifted integration variables y⃗ = x⃗− x⃗n.

A[ϕ] = ∆t
∑
n

∫
Ωn

Λ(∇ϕ(xn + y))δ(ϕ(x⃗n) + y⃗ · ∇⃗ϕ(x⃗n))dy1dy2
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We can now evaluate each of these integrals separately. We will invent
a new pair of coordinates that are rotated such that one, y∥, is parallel to

∇⃗ϕ and the other,y⊥, is perpendicular to it. Since all we did was rotate the
coordinates in space, dy1dy2 = dy∥dy⊥. The dot product of y with ∇⃗ϕ is

simply y∥∥∇⃗ϕ∥. Plugging this in, we get:

A[ϕ] = ∆t
∑
n

∫
Ωn

Λ(∇ϕ(xn + y))δ(ϕ(x⃗n) + y∥∥∇⃗ϕ∥)dy∥dy⊥

Carrying out the integral over y∥ yields:

A[ϕ] = ∆t
∑
n

∫
Λ(∇ϕ(xn + y))

∥∇⃗ϕ∥
dy⊥ |y∥=0

The integral is performed along the small segment of the curve ϕ = 0
contained inside Ωn. Adding all our regions back together this gives us a line
integral over the curve ϕ = 0.

A[ϕ] = ∆t

∮
ϕ(x⃗)=0

Λ(∇ϕ)

∥∇⃗ϕ∥
ds

If we want the integral to represent the length of the curve, the integrand
should clearly be 1. This finally allows us to pin down a form for Λ!

Λ(∇ϕ) = ∥∇⃗ϕ∥

This gives us an explicit action for the case where ϕ̇ = 0:

S[ϕ] =

∫
k∆t∥∇⃗ϕ∥δ(ϕ)d2x

Finding the general form turns out to be surprisingly easy. There is really
only one way to write a relativistically invariant function of ∂µϕ that reduces

to ∥∇⃗ϕ∥ when ϕ̇ = 0. Here, we are using the mostly negative form of ηµν .√
∥∇⃗ϕ∥2 − ϕ̇ or equivalently

√
−∂µϕ∂µϕ

Plugging this in, we’ve found the general form for our action!

S[ϕ] =

∫
k
√

−∂µϕ∂µϕ δ(ϕ)dX
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Before we dive into exploring the properties of this action, we’ll do two
quick example calculations to see if they give reasonable results. The first
example is that of a string stretched along the x2-axes from −∞ to +∞ and
moving along the x1 axes. Since our x1 coordinate is changing as a function
of time, we can write:

X(t) = x1 or 0 = X(t)− x1

This has the form ϕ(x1, t) = 0 which means that X(t) − x1 can serve as
ϕ in our model. All we need to do to find X(t) is plug it into our formula for
the action.

−∂µϕ∂
µϕ = 1− Ẋ2

S[X] =

∫
k
√

1− Ẋ2 δ(X(t)− x1)dx1dx2dt

Integrating over x1 and moving around our integral over x2 we get:

S[X] =

∫ (∫
k dx2

)√
1− Ẋ2 dt

This is just the action for a relativistic particle of total mass −
∫
k dx2!

This gives us our better physical meaning for the constant k. It is the negative
of the mass density of the strings k = −µ. From here on, I will be writing
the action in terms of µ instead of k as it has more physical meaning.

We will do one more slightly less trivial example: that of a circular string.
We will do something very similar to what we did before when defining X(t),
but now we will define R(t) =

√
x2
1 + x2

2 = r which implies ϕ(r, t) = R(t)−r.
We can then plug this in to find the action. I have skipped the intermediate
steps and jumped right to the final result.

S[R] =

∫
−µR

√
1− Ṙ2 dt

We can then use the Euler Lagrange Equations to find R.

d

dt

(
RṘ√
1− Ṙ2

)
+
√

1− Ṙ2 = 0

When I first tried this problem, I used conservation of energy to make
it first order, then went about solving it mechanically. It was anything but
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easy. The simpler way is to notice that the form of
√
1− Ṙ2 seems to lend

itself to a solution in terms of sine or cosine. I have since come up with a
third way of solving this, by far my favorite, which includes a Wick rotation
and the fact that hanging strings make hyperbolic cosine graphs. This is
included in my video. For now we’ll go with the second method, plug in
R = α sin(βt+ γ) and see what we get (I’m defining θ = βt+ γ for the sake
of fitting the equation on the page).

d

dt

 α2β sin(θ) cos(θ)√
1− α2β2 cos(θ)2

+

√
1− α2β2 cos(θ)2 = 0

This is satisfied if αβ = 1. Thus we have:

R(t) = α sin

(
t

α
+ γ

)
This is a two parameter family of solutions to a second order differential

equation, so we can be reasonably confident it represents the entire solution
set. There are a few interesting things to note about this solution. First of
all, its physical characteristics are determined by only a single number α: the
maximum radius. The other constant, γ, is a purely mathematical construct
related to when we start counting time.

Second of all, it is pretty clear that the solution only makes sense for
t ∈ [−αγ, α(2π + γ)]. Outside of that interval, our solution gives a negative
radius. At the point when the radius equals zero, the string’s inward velocity
Ṙ approaches the speed of light. This is a kind of singularity. The total
energy of the string must stay constant, while the radius (and thus the length)
of the string approaches zero. This means that the energy density of the
string blows up to infinity as the string shrinks.

Over the last month or so I’ve been trying to show that this singularity
happens for all collections of strings of finite size in 2+1 dimensional space, or
that there are some configurations that avoid it. For now, I haven’t been able
to show either. My attempt has centered around checking whether the area
encompassed by the collection of strings must shrink to zero. The change in
area does have a very simple form: the integral of ϕ̇δ(ϕ) over all space. I
haven’t yet been able to show what this implies.

For now, we can use the Euler Lagrange equations to find a general equa-
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tion of motion for our system.

∂

∂Xµ

∂L
∂
[

∂ϕ
∂Xµ

] = ∂L
∂ϕ

∂

∂Xµ

[
−∂µϕ δ(ϕ)√
−∂µϕ∂µϕ

]
=
√

−∂µϕ∂µϕ δ′(ϕ)

Amazingly, when we expand it, all the terms multiplying δ′(ϕ) cancel,
leaving:

[∂µϕ∂νϕ∂
µ∂νϕ− ∂σϕ∂σϕ∂

τ∂τϕ]δ(ϕ) = 0

There are multiple ways to satisfy this equation. Perhaps the easiest is
to constrain ϕ more, restricting ourselves to ϕ for which the part multiply-
ing the delta function is zero at all points, not just when the delta function
itself is non-zero. This is still a second order, non-linear partial differential
equation. It is anything but easy to solve.

So far, we have only studied strings in 2+1 dimensions but I’ll conclude
by generalizing our action to D+1 dimentional space. The action will now be
a functional of D-1 functions {ϕn}. The string exists at all points X where:

ϕn(X) = 0 ∀n

Just like before, we only want points where the string exists to contribute
to the action, so we will write it as a delta function multiplied by a function
of the derivatives of all the ϕn.

S =

∫ tf

ti

∫
Ω

Λ({∂ϕn})
∏
n

δ(ϕn) dxi dt

Like last time, we first consider the case where the string is stationary
(ϕ̇ ≡ 0 ∀n).

S = ∆t

∫
Ω

Λ({∇ϕn})
∏
n

δ(ϕn) dxi

Then, we break up omega into many sub-regions Ωα (small enough that
all the ϕα are approximately linear over the regions) and pick corresponding
points xα ∈ Ωα, then split up our integral.

S = ∆t
∑
α

∫
Ωα

Λ({∇ϕn(x)})
∏
n

δ(ϕn(x)) dxi
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Like last time, we define new integration variables in each of our regions
({y∥n}, y⊥). These are shifted so that the new origin corresponds to xα, and
all but one of the unit vectors (unit both in the new and old system) point
along the D-1 gradients of the ϕn, while the last one is perpendicular to all
of them. We can write our new volume element in terms of the derivatives
of ϕ where ϵ is the completely antisymmetric tensor.

dx =
∂{xi}
∂{yi}

dy∥ dy⊥ =

∏
n ∥∇ϕn∥∑

{in} ϵ
i1i2i3···

∏
n

∂ϕn

∂xin

dy∥ dy⊥

Next we will plug this into our integral and simultaneously make the
assumption that all the ϕn are approximately linear in the regions Ωα. This
gives us:

S = ∆t
∑
α

∫
Ωα

Λ({∇ϕn(x)})
∏
n

δ(∥∇ϕn∥y∥n)
∏

n ∥∇ϕn∥∑
{in} ϵ

i1i2i3···
∏

n
∂ϕn

∂xin

dy∥ dy⊥

Integrating over all of the y∥n cancels the product in the numerator of our
volume element, giving us:

S = ∆t
∑
α

∫
Ωα,ϕ=0

Λ({∇ϕn(x)})∑
{in} ϵ

i1i2i3···
∏

n
∂ϕn

∂xin

dy⊥

Each of these is an integral over the small and approximately straight
segment of string contained in each of the Ωα. I haven’t explicitly written
it out, but if there was no point in a given Ωα where ϕn = 0 ∀n, then the
integrand for that Ωn would instead be zero. Like last time, adding all of the
Ωα back together yields a line integral over the strings.

S = ∆t

∮
ϕ(x⃗)=0

Λ({∇ϕn})∑
{in} ϵ

i1i2i3···
∏

n
∂ϕn

∂xin

ds

If we want this to be proportional to the total length of all the strings,
the integrand needs to be constant. We can write it in terms of µ, the mass
density of the string. This finally lets us pin down a form for Λ!

Λ({∇ϕn}) = −µ
∑
{in}

ϵ{in}
∏
n

∂ϕn

∂xin
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We can plug this into our action in terms of Λ to find the action of a
stationary string.

S = ∆t

∫
Ω

−µ
∑
{in}

ϵ{in}
∏
n

∂ϕn

∂xin

δ(ϕn)d
3x

It’s much less obvious than last time, but there is still basically only one
relativistically invariant function of the derivatives of the ϕn that reduces
to the above integrand when ϕ̇n = 0 (The first picture on my website is
me showing how this reduces to the above action for a stationary string).
Substituting this into our integral, we’ve found the total action for a collection
of relativistic strings in D+1 dimensional space!

S =

∫ tf

ti

∫
Ω

−µ

√√√√ϵµ{βn}ϵµ{αn}

D−1∏
n

∂ϕn

∂xαn

∂ϕn

∂xβn

D−1∏
n

δ(ϕn)d
3x

If we solve for our equations of motion using the Euler Lagrange equations,
we again find that all the terms containing δ′(ϕn) cancel, and we get a single
equation multiplied by a delta function of the field.

∀j

[∏
n

δ(ϕn)

]
∂

∂xαj

ϵµ{βn}ϵµ{αn}

(∏D−1
n̸=j

∂ϕn

∂xαn

∂ϕn

∂xβn

)
∂ϕj

∂xβj√
ϵµ{βn}ϵµ{αn}

∏D−1
n

∂ϕn

∂xαn

∂ϕn

∂xβn

 = 0

If we mandate that everywhere, not just ϕn = 0, the field follows this
equation, we can write the evolution of ϕ as a field equation with no delta
functions. It’s worth remarking how amazing it is that for all dimensions,
terms containing derivatives of δ cancel. This was far from what I expected.
So far this is the only action I’ve found that includes a delta function where
this happens. Proving that this is the only action where the higher order
derivatives of delta functions cancel is another project I’ve been working on.

Though everything written here was done classically, in the future I hope
to quantize this model. I’ve been working on this from two angles. The first is
to plug the action (delta function and all) into the path integral. The second
is to treat the field equation I derived as a quantum field, then look for level
curves using a delta function of the field operator. I’ve also been looking
into representing higher dimensional shapes and open strings with similar
models.
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Perturbative Expansion for Interacting
Quantum Field Theories

Max Orton

Summer 2024

The work here is, in many ways, an extension of my quantization of free
fields. Though my original method worked well with linear fields, it couldn’t
handle interactions, so I spent a year developing this perturbative approach.
I find it amazing that this, combined with my quantization of linear fields,
describes nearly all the matter within and around us.

Given the free field evolution for a set of bosonic and fermionic fields
and a form for the interaction terms in the action, our goal to predict the
evolution of the fields.

The amplitude that an initial state |ψI⟩ will transform into a final state
|ψF ⟩ after an elapsed time T is:

⟨ψF , T |ψI⟩ = ⟨ψF | e−iTE |ψI⟩

In order to explore theories where only one part of the Hamiltonian is
known we make the following definition:

E = EF (0)− LI(0)

Here, EF governs the free evolution of the system, while LI is the interact-
ing terms in the Lagrangian. The total Hamiltonian E is time independent,
but in general, EF and LI will not be conserved, and so we have arbitrarily
chosen to evaluate them at time 0.
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We can next use one definition of ex to expand our time evolution:

⟨ψF | e−iTE |ψI⟩ = lim
ϵ→0

⟨ψF | [1− iϵEF (0) + iϵLI(0)]
(T
ϵ
) |ψI⟩

We can now expand this to increasing order in the interacting Lagrangian.
Our first term, O(L0

I), will of course simply be:

lim
ϵ→0

⟨ψF | [1− iϵEF (0)]
(T
ϵ
) |ψI⟩ = ⟨ψF | e−iTEF (0) |ψI⟩

This just describes evolution in the free theory, the details of which we
already know. Next, we will consider the terms in the expansion that contain
one power of LI . These will be characterized by a single number detailing
which factor in the product it was pulled from. We can call this number n
and associate it with a time t ∈ [0, T ] where t = ϵn. Using t gives us one
distinct advantage: while n depends on our choice of discretization, t does
not, so it will still make sense after ϵ tends to zero. This second term in our
expansion will have the following form:

lim
ϵ→0

∑
n

⟨ψF | (1− iϵEF (0))
T
ϵ
−niLI(0)(1− iϵEF (0))

n−1 |ψI⟩

Taking the limit as ϵ tends towards 0, and remembering our definition of
t, we get:

i

∫ T

0

⟨ψF | e−iTEF (0)
[
eitEF (0)LI(0)e

−itEF (0)
]
|ψI⟩ dt

The important thing to note is that the section to the left of the brackets
is ψF shifted to time T in the free theory. Likewise, the section inside the
brackets is the Heisenberg formula for operator evolution evaluated on LI

and thus is LI(t). Bringing this all together we get:

⟨ψF , T | i
∫ T

0

LI(t)dt |ψI , 0⟩ or ⟨ψF , T | iSI |ψI , 0⟩

Here, SI is the interacting part of the action. It’s worth noting that SI

is the interacting part of the action for the interval of time we are studying,
so is integrated only from the initial to final time.

The derivation of the remaining terms runs along the exact same lines,
so I’ll only include the results below. Note that T denotes the time ordered
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product and everything is evaluated in the free theory:

O(L2
I) :

∫ T

0

∫ t2

0

⟨ψF , T | [iLI(t2)] [iLI(t1)] |ψI , 0⟩ dt1dt2 = ⟨ψF , T | T
{
(iSI)

2

2

}
|ψI , 0⟩

O(L3
I) : ⟨ψF , T | T

{
(iSI)

3

3!

}
|ψI , 0⟩

O(L4
I) : ⟨ψF , T | T

{
(iSI)

4

4!

}
|ψI , 0⟩

The general form is clearly:

O(Ln
I ) : ⟨ψF , T | T

{
(iSI)

n

n!

}
|ψI , 0⟩

Adding all of them up and using the power series for ex we find a form
for the amplitude. Since everything is evaluated in the free theory, we know
how to calculate it!

⟨ψF , T | T
{
eiSI

}
|ψI , 0⟩

I’ve been searching for a way to quantize interacting fields since hearing
about the Feynman calculus in one of Susskind’s recorded lectures two years
ago. Working this out was one of the most exciting moments of the last few
years for me. I also figured out the Feynman propagator as a time ordered
product of fields at around the same time, but didn’t have time to write it
into this portfolio. I haven’t yet been able to do many calculations with this
method. This is because I’m fairly certain the vacuum state is different in
interacting and free theories, which has kept me from correctly specifying ini-
tial and final conditions. I’m working on a way to fix that. In the meantime,
it’s incredible to be able to plug a temporary source field (eg; a lightbulb) into
the vacuum and calculate on average how many particles it produces and in
what states!
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Quantizing a Klein Gordon Field

Max Orton

Fall 2023 through Spring 2024

I first learned Quantum Mechanics through Leonard Susskind’s Theoreti-
cal Minimum books. It was fascinating, but I wasn’t entirely satisfied with it.
I already knew the basics of special relativity when I read the book, and the
quantum mechanics that Susskind described was inherently non-relativistic. I
had an intense curiosity about how to make quantum mechanics relativistic.
This began both my work in the Path Integral (see my other write-up, “De-
riving the Canonical Quantization Approach from the Path Integral”) and
Quantum Field Theory. Early on, I tried to find a formula for how the fields
would evolve in terms of the action. Susskind had already said that free fields
followed wave equations. Unfortunately, I found many many permutations
of the action, state vectors, and the vacuum vector that all reduced to the
equation he had given when applied to a free field. In the end, I just brute-
forced the problem, trying each equation until one started giving reasonable
results. It’s worth noting that everything here is work I did, and wrote up,
in my Junior year. I have since found more efficient methods for some of
this. Still, I thought I’d include it as a kind of “time capsule” of what I was
obsessed with in eleventh grade.

We begin by defining a collection of operators (note here c = ℏ = 1):

ϕn(t), πn(t) | ∀t [ϕn(t), πm(t)] = iδnm

We will also assume the Lagrangian (L) and Hamiltonian (H) have the
following form (here V ({ϕ}) is an arbitrary potential that depends on all the
ϕs):

L =
∑
n

1

2
ϕ̇2
n − V ({ϕ}), H =

∑
n

1

2
ϕ̇2
n + V ({ϕ})
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For this particular choice of Lagrangian and Hamiltonian we are going
to prove that the following familiar equation is equivalent to Heisenberg’s
equation for the time dependence of an operator.

d

dt

∂L
∂ϕ̇n

− ∂L
∂ϕn

= 0 ↔ L̇ = i[H,L]

Though this at first glance might not seem general enough to be useful this
is the form of both the Klein Gordon and Proca Lagrangians. For the sake
of this proof we are going to assume that time evolution unfolds according
to some unitary operator which is a function of all the ϕns and πns:

ϕn(t) = eitU({ϕ},{π})ϕn(0)e
−itU({ϕ},{π}), πn(t) = eitU({ϕ},{π})πn(0)e

−itU({ϕ},{π})

We are trying to show that, given the equation similar to stationary action
above:

U({ϕ}, {π}) = H({ϕ}, {π})

First we write out the least action equation more explicitly in terms of the
Lagrangian. We will divide it into two different equations, one to define the
derivative of the generalized coordinate and the other to define the derivative
of the momenta:

d

dt

∂L
∂ϕ̇n

− ∂L
∂ϕn

= 0 → π̇n = − ∂V

∂ϕn

, ϕ̇n = πn

First, we need to write the first derivative of ϕ and π in terms of U (here ψ
refers to an arbitrary operator, ϕ or π as both have the same time dependence
and ϵ is a infinitesimal change in time small enough that it’s higher powers
are negligible):

ψ(t) = eitUψn(0)e
−itU

ψ(t+ ϵ) = ψ(t) + ϵψ̇(t) = eiϵU(eitUψn(0)e
−itU)e−iϵU

We see that the interior of the parenthesis is just the definition of ψ(t).

ψ(t) + ϵψ̇(t) = eiϵUψ(t)e−iϵU

Expanding out the exponentials to first order in ϵ we get

ψ(t) + ϵψ̇(t) = (1 + iϵU)ψ(t)(1− iϵU)
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ψ(t) + ϵψ̇(t) = ψ(t) + iϵUψ(t)− iϵψ(t)U

Identifying ψ̇ with the component of the right hand side of the expression
proportional to ϵ we see that

ψ̇(t) = i[U, ψ(t)]

This in turn means

π̇n(t) = i[U, πn(t)], ϕ̇n(t) = i[U, ϕn(t)]

To show that the Euler Lagrange equations above are equivalent to the
Heisenberg time dependent operator equations we need to show that U is
equal to the Hamiltonian. To do this we write out the component of the
Euler Lagrange equations defining the change in π in terms of U :

π̇n = − ∂V

∂ϕn

→ [U, πn] = i
∂V

∂ϕn

Next we use the following equation which follows from the definition of
the canonical commutator:

[F ({ϕ, π}), πn] = i
∂F

∂ϕn

Plugging this in and noting that U is a function of all the ϕ’s and π’s we
get:

∂U

∂ϕn

=
∂V

∂ϕn

From this it follows that U has the following form where K({π}) is an arbi-
trary function which depends only on the π’s:

U({π, ϕ}) = K({π}) + V ({ϕ})

This is exactly the form we expect to see if U = H: the potential energy
plus something that depends only on the π’s.

In order to pin down the form of K we need to use the second part of the
Euler Lagrange equations, the part that defines the change in ϕ:

ϕ̇n = πn → −i[ϕn, U ] = πn
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We need to use another equation that follows directly from the canonical,
commutators:

[ϕn, F ({ϕ, π})] = i
∂F

∂πn

Plugging this in we get:

∂U

∂πn
=
∂K

∂πn
= πn

Up to a redundant additive constant this means K has the form:

K({π}) =
∑
n

1

2
π2
n

Plugging this into U we get:

U = K + V =
∑
n

1

2
π2
n + V ({ϕ}) = H

Thus:
U = H

Now that we have shown the Euler Lagrange equations are equivalent to
Heisenberg’s equations for the time evolution of an operator, we can apply
them to a simple quantum field theory. In this case we will use a Klein
Gordon field with mass m. As before we work in natural units: c = ℏ = 1.
The action is defined as follows (here the integral is over all four dimensions
of space-time):

S =

∫
1

2
(∂µϕ∂

µϕ−m2ϕ2)d4X

Before we can leverage the Euler Lagrange equations on this field we need
to do two things. The first is to derive the more useful field theoretic version
of the Euler Lagrange equations from the originals above and the second is
to justify our choice for the fields canonical commutators.

The derivation of the field theory Euler Lagrange equations from the
originals is rather straight forward. First assume that the Lagrangian is
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the spatial integral over a Lagrangian density (note that from here on, the
Lagrangian will be written L while the Lagrangian density will be L):

L(t) =

∫
L({ϕ(x⃗)}, t)d3x

We then write out the Euler Lagrange Equations using L:

∂

∂t

δL

δϕ̇
− δL

δϕ
= 0

Assuming that L({ϕ, ∂ϕ}) depends only on first derivatives of ϕ we can
make the following two substitutions:

δL

δϕ̇
=
∂L
∂ϕ̇

δL

δϕ
= −

∑
n

∂

∂xn

∂L
∂[ ∂ϕ

∂xn
]
+
∂L
∂ϕ

Plugging this in and using the Einstein summation convention to simplify
our notation (note that here X represents the 4-vector X = (t, x⃗)):

∂

∂Xµ

∂L
∂[ ∂ϕ

∂Xµ ]
− ∂L
∂ϕ

= 0

We will also need to justify our canonical commutators. The standard
canonical commutators for some discrete collection of generalized coordinates
{ϕn} are (remember that L represents the Lagrangian not the Lagrangian
density):

[ϕn,
∂L

∂ϕ̇m

] = iδnm

To generalize this to a continuous field we will need to reinterpret the
partial derivative of the Lagrangian. To do this, we make the following
definition of the partial derivative of a field:

∂

∂ϕ(x⃗)
f(ϕ(y⃗)) =

{
f ′(ϕ(x⃗)) x⃗ = y⃗

0 x⃗ ̸= y⃗

Let’s use this, and the definition of L in terms of L to expand the following
expression. What we are looking for is a form for [ϕ(x), π(y)]:

[ϕ(x⃗),
∂L

∂ϕ̇(x⃗)
] = i
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∫
[ϕ(x⃗),

∂L(y⃗)
∂ϕ̇(x⃗)

]d3xd3y = i

∂L
∂ϕ̇(x⃗)

is only non-zero when x = y so we can substitute x for y in that

part of the expression yielding:∫
[ϕ(x⃗),

∂L(y⃗)
∂ϕ(y⃗)

]d3xd3y = i

From here we use the standard definition for the conjugate momentum of
a field:

π(x⃗) =
∂L
∂ϕ̇

(x⃗)

Plugging this in we get:∫
[ϕ(x⃗), π(y⃗)]d3xd3y = i

However above we just said that the term ∂L
∂ϕ̇

is only non-zero when x⃗ = y⃗

so we have:
x⃗ ̸= y⃗ [ϕ(x⃗), π(y⃗)] = 0

The only function that satisfies these two conditions is:

[ϕ(x⃗), π(y⃗)] = iδ(x⃗− y⃗)

Now that we have that out of the way we can use our equations on the
Klein Gordon field. We plug our definition of the action into the Euler
Lagrange equations:

L =
1

2
(∂µϕ∂

µϕ−m2ϕ2)
∂

∂Xµ

∂L
∂ ∂ϕ

∂Xµ

− ∂L
∂ϕ

= 0

(∂µ∂
µ +m2)ϕ(x⃗) = 0

As expected we get the Klein Gordon equation. To solve this equation
we write the field in terms of it’s Fourier Transform (note that I’ve dropped
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some factors of 2π, had I included them they would have been divided out
later in the analysis):

ϕ(x⃗, t) =

∫
ϕ̂(p⃗, t)eip⃗·x⃗d3p

We can then plug this into the Klein Gordon equation and solve:

0 = (∂µ∂
µ +m2)ϕ(x⃗) = (

∂2

∂t2
−∇2 +m2)ϕ(x⃗)

=

∫
¨̂
ϕ(p⃗, t)eip⃗·x⃗ − ϕ̂(p⃗, t)∇2eip⃗·x⃗ +m2ϕ̂(p⃗, t)eip⃗·x⃗d3p

=

∫
[
¨̂
ϕ(p⃗, t) + |p⃗|2ϕ̂(p⃗, t) +m2ϕ̂(p⃗, t)]eip⃗·x⃗d3p

This equation must hold for all values of x⃗ so we can drop the integral
and evaluate for each momentum state individually:

¨̂
ϕ(p⃗, t) + |p⃗|2ϕ̂(p⃗, t) +m2ϕ̂(p⃗, t) = 0

¨̂
ϕ(p⃗, t) = −(|p⃗|2 +m2)ϕ̂(p⃗, t)

This is just the equation for a simple harmonic oscillator with frequency√
|p⃗|2 +m2 which has solutions:

ϕ̂(p⃗, t) = A(p⃗)eit
√

|p⃗|2+m2
+B(p⃗)e−it

√
|p⃗|2+m2

We will simplify this expression by calling the frequency E. Thus:

ϕ̂(p⃗, t) = A(p⃗)eitE +B(p⃗)e−itE

We can then plug this back into our original form for the field operator:

ϕ(x⃗, t) =

∫
A(p⃗)eiEt+ip⃗·x⃗ +B(p⃗)e−iEt+ip⃗·x⃗d3p

We can then do a little rearranging, namely reversing the order over which
we integrate the term involving B(p⃗):

ϕ(x⃗, t) =

∫
A(p⃗)eiEt+ip⃗·x⃗ +B(p⃗)e−iEt+ip⃗·x⃗d3p
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=

∫
A(p⃗)eiEt+ip⃗·x⃗d3p+

∫
B(p⃗)e−iEt+ip⃗·x⃗d3p

=

∫
A(p⃗)eiEt+ip⃗·x⃗d3p+

∫
B(−p⃗)e−iEt−ip⃗·x⃗d3p

=

∫
A(p⃗)eiEt+ip⃗·x⃗ +B(−p⃗)e−iEt−ip⃗·x⃗d3p

To simplify our notation we can recognize that the term in the exponent is
just the product of two 4-vectors, X and a new vector P defined P = (E, p⃗):

ϕ(X) =

∫
A(p⃗)eiPµXµ

+B(−p⃗)e−iPµXµ

d3p

Next we explicitly enforce the fact that the field ϕ(X) is a hermitian
operator:

ϕ†(X) = ϕ(X)∫
A(p⃗)eiPµXµ

+B(−p⃗)e−iPµXµ

d3p =

∫
A†(p⃗)eiPµXµ

+B†(−p⃗)e−iPµXµ

d3p

Thus we can see:
A†(p⃗) = B(−p⃗)

We can then plug this into our expression for the field to write it entirely
in terms of the set of operators A(p⃗). In this form it is explicitly hermitian as
it is written in as the sum of an operator and it’s hermitian conjugate. Note
that we are still integrating over d3p and not over d4P as the 0th component
of the momentum 4-vector still depends on the others:

ϕ(X) =

∫
A(p⃗)eiPµXµ

+ A†(p⃗)e−iPµXµ

d3p

Now that we have a form for ϕ(X) in terms of our new operator A(p⃗)
we need to find the commutators of A. We are doing this because we are
trying to find the particle creation and annihilation operators which should
be hidden somewhere in the field.

We will do this by enforcing the canonical commutators while making two
simplifying assumptions, namely that the only non-zero commutators those
with an A and an A† of the same momentum. This is of course only a guess
and it will eventually be justified by the form we find for the energy. If the en-
ergy didn’t reproduce the time dependence we’d found for A then we’d know
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that our assumptions had been inconsistent. As we will soon see they are not.

First we write out the canonical commutators for the field in position
space:

[ϕ(x⃗), ϕ̇(y⃗)] = iδ3(x⃗− y⃗)

We then plug in our form for the field in terms of A and simplify using
the assumptions mentioned above:

iδ3(x⃗− y⃗) =

∫ ∫
2iE[A(p⃗), A†(q⃗)]ei(p⃗·x⃗−q⃗·y⃗)d3pd3q

This expression must only depend on x⃗− y⃗ and no other combination so
this means [A(p⃗), A†(q⃗)] must be 0 whenever p⃗ ̸= q⃗. We can thus make the
following definition:

[A(p⃗), A†(q⃗)] = F (p⃗)δ3(p⃗− q⃗)

To find a form for F we plug it back into the above expression. Note that
I’ve canceled the i on both sides of the expression:

δ3(x⃗− y⃗) =

∫
2EF (p⃗)eip⃗·(x⃗−y⃗)d3p

In order for this integral to evaluate to the dirac delta our commutator
must be:

[A(p⃗), A†(q⃗)] =
1

16π3E

We are looking for raising and lowering operators which have commutator
1. To this end we do the following manipulation:

[(4
√
π3EA(p⃗)), (4

√
π3EA(p⃗))†] = 1

We can call the new operator ψ(p⃗) and rewrite the field in terms of it:

ψ(p⃗) = 4
√
π3EA(p⃗)

ϕ(X) =

∫ [
ψ(p⃗)ei(PµXµ) + ψ†(p⃗)e−i(PµXµ)

] d3p

4
√
π3E

Though the ψs have the right commutators for creation and annihilation
operators we are not done. We need to show that the operator they raise
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and lower is the energy and that they raise/lower by the right amount to
be adding/removing particles. To do this, we will write out the energy in
terms of ψ by using our definition of ϕ. The calculation is very long and not
particularly enlightening so I will only show the end result here:

H =

∫
Eψ†(p⃗)ψ(p⃗)d3p

We have one more thing to do before we’re done. We need to justify our
assumptions from earlier about the form for the commutators of A and thus
those of ψ. To do this, we can calculate the first derivatives of the ψs using
Heisenbergs formula for time evolution. If it agrees with what we already
have, than our assumptions were consistent.

ψ̇(p⃗) = i[H, ψ(p⃗)] = −iEψ(p⃗)

This is the exact same equation we derived earlier for the time dependence
of A. Thus the assumptions we made earlier related to the commutators of
the ψs were correct.

Finally we can analyze the form we’ve found for the energy. The term in
the middle is the number operator whose eigenvalues are raised and lowered
by the ψs. We can interpret this as the number of particles of momentum p⃗.
This is then multiplied by the energy of each of the particles. This is exactly
the energy we would expect for a collection of non-interacting relativistic
particles!

This is one of my favorite problems I’ve solved. It blows my mind that
it’s possible to start with the Klein Gordon equation, an equation for fields,
and end up with a Hamiltonian that describes particles

10



Deriving the Canonical Quantization
Approach from the Path Integral

Max Orton

Spring 2024

My work with the path integral was another attempt to make quantum
mechanics consistent with special relativity. It took me several attempts to
find its correct form as I began this work knowing only that the amplitude
involved a sum over paths weighted by a complex exponential of the action.

Our goal is to start with the basic principles of the path integral approach
and use them to derive canonical quantization. We will be studying an n par-
ticle system with positions and momenta {qi, pi}. Each state is characterized
by a wave function ψ({qi}). For our purposes, it is a function only of the
{qi} as we will work only in position space. The amplitude that state ψI will
transition to state ψF over elapsed time tI → tF is given by:

⟨ψF , tF |ψI , tI⟩ ∝
∫
ψF ({qi(tF )})ψI({qi(tI)})eiS[{qi}]Dqi

Note that for our purposes, S[{qi}] is the action that exists between tI
and tF .

S[{qi}] =
∫ tF

tI

L({qi(t)})dt

First, we will find the form of the momentum operator. We can do this by
multiplying it by two vectors, ψ1 and ψ2 on the right and left respectively. We
have to shift ψ2 forward by an infinitesimal time shift ϵ because momentum
doesn’t make sense in the path integral without some amount of elapsed time.
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Later, we’ll let it tend to zero.

⟨ψ2, t| pi |ψ1, t⟩ ∝ lim
ϵ→0

∫
ψ2({qi(t+ϵ)})ψ1({qi(t)})pi(t) exp

{
i

∫ t+ϵ

t

L(τ)dτ
}
Dqi

We can solve this integral by discritizing time. We will break it down
into steps of size epsilon which effectively makes our path a straight line
from the initial point to the final point. Amazingly, this is enough resolution
to find the momentum operator. With this restriction on our path q(t) = q,
q(t + ϵ) = q + ϵq̇ and S = ϵL. We will also use the fact that the cannonical
momentum to qi is pi =

∂L
∂q̇i

. Plugging all this in, we get:

⟨ψ2, t| pi |ψ1, t⟩ ∝ lim
ϵ→0

∫
ψ2({qi + ϵq̇i})ψ1({qi(t)})pi(t) exp {iϵL(t)} dqidq̇i

We can rewrite pi as coming from a derivative of the exponential,

⟨ψ2, t| pi |ψ1, t⟩ ∝ lim
ϵ→0

−i
ϵ

∫
ψ2({qi + ϵq̇i})ψ1({qi(t)})

∂

∂q̇i
exp {iϵL(t)} dqidq̇i

integrate by parts and do the chain rule,

⟨ψ2, t| pi |ψ1, t⟩ ∝ lim
ϵ→0

i

∫
∂

∂qi

(
ψ2({qi + ϵq̇i})

)
ψ1({qi(t)}) exp {iϵL(t)} dqidq̇i

let epsilon go to zero,

⟨ψ2| pi |ψ1⟩ ∝ i

∫
∂

∂qi

(
ψ2({qi})

)
ψ1({qi(t)})dqi

and integrate by parts again.

⟨ψ2| pi |ψ1⟩ ∝
∫
ψ2({qi})

[
−i ∂
∂qi

]
ψ1({qi(t)})dqi

Up to a constant of proportionality, we’ve found the momentum operator!

Our next goal is to show that states, evolve by repeated application of
(1 − iϵH) where H is the Hamiltonian. To do this, we will take the inner
product of two states separated by a small time step δt. In this case, δt = 2ϵ,
where epsilon is the size of the discretization we will use to solve the path
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integral. Finding the energy operator requires this slightly longer path. We
will be trying to show:

⟨ψ2, t+ 2ϵ|ψ1, t⟩ = ⟨ψ2, t+ ϵ| (1− iϵH) |ψ1, t⟩

Our first step is to write out the inner product as a path integral.

⟨ψ2, t+ 2ϵ|ψ1, t⟩ ∝
∫
ψ2({qi(t+ 2ϵ)})ψ1({qi(t)}) exp

(
i

∫ t+2ϵ

t

L(τ)dτ
)
Dq

Again, we will discretize time into steps of size ϵ = 1
2
δt. We than make

the following substitutions:

1: qi(t+ nϵ) = qin
1: q̇i(t+ nϵ) = q̇in,n+1

2: L(t+ nϵ) = Ln,n+1

3: S = ϵL01 + ϵL12

Now we can rewrite our integral in terms of these new variables:

⟨ψ2, t+ 2ϵ|ψ1, t⟩ ∝
∫
ψ2({qi1+ ϵq̇i12})ψ1({qi0}) exp (iϵL01 + iϵL12) dq

i
0 dq̇

i
01 dq

i
12

Now we expand to first order in epsilon. We have to do this carefully
because we only want to expand around the second time step. Thus, we will
leave the exp(iϵL01) untouched. The first order term is:

ϵ

(∫ [
iψ2({qi1})L12 +

∑
i

(
∂ψ2

∂qi
q̇12i

)]
ψ1({qi0}) exp (iϵL01) dq

i
0 dq̇

i
01 dq

i
12

)

We can break this into two separate integrals and evaluate them individ-
ually before adding them back together. By far the simpler of the two is
the first term in the brackets above (the one multiplied by the Lagrangian
between times one and two).

iϵ

∫
L12ψ2({qi1})ψ1({qi0})) exp(iϵL)dqi0 dq̇i01 dqi12

This term doesn’t require much manipulation. All we need to do is rewrite
it to have the same coefficient as the Hamiltonian in the time evolution
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operator. This gives us the negative of the Lagrangian which is, indeed, a
term in the Hamiltonian!

−iϵ
∫

(−L12)ψ2({qi1})ψ1({qi0})) exp(iϵL01)dq
i
0 dq̇

i
01 dq

i
12

The other term will require a little more manipulation. This will amount
to the inverse of what we did with the momentum operator. There, we took
a factor of momentum in the integrand and replaced it with a derivative.
Here, we will take a derivative and replace it with a factor of the momentum
in the integrand. We do the following steps:

ϵ
∑
i

∫
q̇12i

∂

∂q0i
ψ2({q0i + ϵq̇01i})ψ1({q0i}) exp(iϵL01)Dq

We can replace the derivative with respect to q0i with a derivative with
respect to q̇01i, which cancels the ϵ out front.∑

i

∫
q̇12i

∂

∂q̇01i
ψ2({q0i + ϵq̇01i})ψ1({q0i}) exp(iϵL01)Dq

Then, we integrate by parts, shifting the derivative from ψ2 onto the rest
of the integrand (at the cost of a negative sign). The only thing besides ψ2

that depends on q̇01i is L01. This gives us:

−
∑
i

∫
q̇12iψ2({q0i + ϵq̇01i})ψ1({q0i})

∂

∂q̇01i
exp(iϵL01)Dq

Evaluating this derivative, we pull down a factor of i, a factor of ϵ, and
a derivative of L01 with respect to q̇01i, which we recognize as the conjugate
momentum p01i!∫ (

−iϵ
∑
i

q̇12ip01i

)
ψ2({q1i})ψ1({q0i}) exp(iϵL01)Dq

Adding these back together, we have an expression for our original inner
product (where k is a constant of proportionality that normalizes our path
integral).

⟨ψ2, t+ ϵ|ψ1, t⟩− ikϵ
∫ (∑

i

q̇12ip01i − L12

)
ψ2({q1i})ψ1({q0i}) exp(iϵL01)Dq
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But... the expression in parenthesis is just the Hamiltonian! Rewriting
this all in terms of inner products, we’ve derived the expression for the evo-
lution of a quantum state in the canonical quantization approach only using
the path integral !

⟨ψ2, t+ 2ϵ|ψ1, t⟩ = ⟨ψ2, t+ ϵ| (1− iϵH) |ψ1, t⟩

There is a lot I plan to do with the path integral approach in the future.
For instance, I have hopes to recast the work I’ve done in quantum field
theory in terms of the path integral. The way I’ve written it so far explicitly
singles out time. I hope to eventually remove this, perhaps by creating a way
to measure and restrict the amount of information stored in a given state.
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Solutions to the Wave Equation

Max Orton

Sophomore and Junior Year: 2022 through 2023

The wave equation is one of the earliest projects I tried to figure out. I
started investigating it during my Freshman year as a stepping stone toward
Maxwell’s Equations. This write-up describes a model I created that involves
breaking an initial condition into components, each defined only along a sin-
gle axis. It is the simplest general solution I’ve created so far.

We will be investigating and finding solutions to the wave equation:

□ ϕ = 0 or
∂2ϕ

∂t2
= c2∇2ϕ

This problem was a priority of mine, primarily because it was fun, but
also because the wave equation turns out to be equivalent to a surprising
number of other interesting PDEs. A good example of this is the Klein
Gordon equation. Say we have a field ϕ that satisfies the wave equation in
N dimensional space (space not spacetime).

∂2ϕ

∂t2
=
∂2ϕ

∂x21
+
∂2ϕ

∂x22
+ · · ·+ ∂2ϕ

∂x2N

We can invent a new field ψ that depends only on N-1 of the coordinates.
It is defined:

ϕ(x1, x2, · · ·xN) = ψ(x2, · · ·xN)eimx1

If we plug this into our equation for ϕ, we can get an expression for ψ.

∂2ψ

∂t2
eimx1 =

(
∂2

∂x21
ψeimx1

)
+
∂2ψ

∂x22
eimx1 + · · ·+ ∂2ψ

∂x2N
eimx1
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Expanding this, we find that ψ follows the Klein Gordon Equation.

∂2ψ

∂t2
=
∂2ψ

∂x22
+ · · ·+ ∂2ψ

∂x2N
−m2ψ

Before we solve the entire wave equation, we can start with the one di-
mensional version. We see that it is:(

∂2

∂t2
− c2

∂2

∂x2

)
ϕ = 0

We can factor this expression into two terms. It is worth noting that
this is not the way I originally solved this equation. When I first solved it, I
Fourier Transformed it in space, but not in time, which made it a harmonic
oscillator. I solved that equation, then reversed the Fourier Transform. As
it is, we will use a simpler method I discovered later.(

∂2

∂t2
− c2

∂2

∂x2

)
ϕ =

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
ϕ = 0

Only one of the two factors, when operated on ϕ, needs to yield zero for
this equation to be satisfied. This gives us two equations, and their solutions
can be written in terms of two arbitrary functions: f : R → R and g : R → R.(

∂

∂t
− c

∂

∂x

)
ϕL → ϕL(x, t) = f(x+ ct)

(
∂

∂t
+ c

∂

∂x

)
ϕR → ϕR(x, t) = g(x− ct)

Because of linearity, ϕ can be written as a sum of these two solutions.

ϕ(x, t) = f(x+ ct) + g(x− ct)

Now we can move on to the N dimensional wave equation. The obvious
solution is to write it as a Fourier Transform. For a real field, this version of
the solution would have the form:

ϕ(x⃗, t) =

∫
α(k⃗)ei(k⃗·x⃗+t∥k⃗∥) + α(k⃗)e−i(k⃗·x⃗+t∥k⃗∥)dNk
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This expression can be very useful. I’ve used it extensively when working
with quantum fields, but it is not the most satisfying answer. After all, it
requires N different integrals to evaluate the expression, not to mention at
least N more to set the initial conditions.

We are going to notice something else. If a function depends only on one
of the x’s, it must satisfy the one dimensional wave equation as all the other
derivatives would be zero. Likewise, since the wave equation is rotationaly
symmetric, a function that depends only on any unit vector dotted with
position must follow the one dimensional wave equation with respect to a
directional derivative along that unit vector. Any linear combination of these
vectors would also need to satisfy the wave equation. This gives us a form for
ϕ: basically just a superposition of plane waves fn moving along a collection
of corresponding unit vectors αn.

ϕ(x⃗, t) =
∑
n

fn(x⃗ · α̂n − ct)

The question now becomes, how do we find the set of fn given an initial
condition? Basically we want an object F defined.

if g(α̂, r) = F[f(x⃗)](α̂, r) then f(x⃗) =

∫
g(α̂, x⃗ · α̂)dN−1α

I had a small hint with this one. One of the SoME3 submissions was
about ”string art” (creating pictures by connecting strings at the edges of a
circle), and involved solving a problem similar to this one. The person in the
video solved it by just brute-forcing the problem in a way that could not be
done symbolically. However, at the very end, he mentioned that he now had
a new algorithm involving the Fourier Transform. He did not explain how it
worked (honestly, I was glad, as I wanted to figure it out myself), but it gave
me a place to start as I knew the Fourier Transform would be involved.

Since we know the solution will somehow involve the Fourier Transform,
we can begin by writing f in terms of its Fourier Transform, then manipulate
it to try and get it into a form similar to the equation above.

f(x⃗) = (2π)−
N
2

∫
f̂(k⃗)e−ik⃗·x⃗d3k

f(x⃗) =

∫
(2π)−

N−1
2

1√
2π

∫ [
f̂(k̂, ∥k∥) exp

(
−i∥k∥(k̂ · x⃗)

)]
∥k∥N−1d∥k∥dN−1k̂
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This has the form of an integral over a unit vector k̂ of a function that
depends on x⃗ only through x⃗ · k̂. We can use this to write out an expression
for F!

F[f(x⃗)] = F−1

∥k⃗∥
[Fx[f(x⃗)](k⃗)](k̂, r)

This means all we have to do to solve the wave equation is evaluate F on
our initial condition to get the fn, then add them all back together in the
right way to get ϕ. A few moments of thought will show that we actually
have the same total number of integrals to perform in this process as in the
original Fourier Transform method. That said, this solution still does have
an advantage. We’ve shifted one of our 2N integrals from the evaluation to
setting the initial conditions. We will often want to evaluate a solution at
multiple points in time to get a feel for how it evolves. This solution saves
us one integral for each evaluation, save the first one!

My quest to solve this problem has taught me more than I could ever
have imagined at the start. When I began, I barely understood the difference
between an ODE and a PDE. Now I have homemade methods for solving
both. It sometimes felt like I was approaching this with a strategy that valued
quantity over quality. I invented dozens of methods, hoping that one might
just apply to the wave equation. This process has left me with tools to solve
all kinds of other PDEs. I don’t consider this project complete. Though this
decomposition method is the simplest I’ve found so far, I’m hopeful that a
simpler solution exists. A lot of my more recent work on the wave equation
and other PDEs revolves around creating new number systems in which they
can be more easily solved: trying to generalize the fact that an arbitrary
function of a complex number reproduces Laplace’s Equation in 2D to more
equations and corresponding number systems. I’ve used this to find exact
solutions for all 2D PDEs where the total number of derivatives on each
term is constant. I’m also exploring ways to extend this method to more
complex PDEs and in more dimensions.
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