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My work with Relativistic Strings is my most recent project. In The The-
oretical Minimum recorded lectures on String Theory, Susskind used param-
eterized strings, and worked in the lightcone frame. I wanted to create a
manifestly relativistic model that could handle multiple strings at the same
time. This write-up is the result.

Our goal in the following is to find a way to describe 1+1 dimensional
structures consistent with special relativity. We will begin in 2+1 dimensions,
then generalize to higher dimensions and discuss possible ways to quantize
our system.

Our starting point will be the fact that for a collection of relativistic
strings, the action is proportional to the total surface area of the collection.
Though later we will find a more explicit form for the action, for now we can
write:

S = kA

Where S is the action, A is the total surface area, and k is a constant to
maintain dimensional consistency. It’s worth noting that k will need units
of action divided by area which means that k is a force or, in the same vein,
a tension. This works because, though area normally has units of length
squared, a string moving slower than light will instead have its area measured
in units of length time. When I first noticed this, I was very excited, but
honestly, I think this result might just be a coincidence. We will encounter
a better physical interpretation for k later on.

There is only so much we can do with the action written in so abstract
a form, so our next step will be to write it explicitly in terms of the model
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we are using to describe the strings. We will be modeling the strings as the
level curves of, in general, D-1 functions in D+1 dimensional space. The
advantage to this approach is that multiple strings and even interactions
between strings are baked into the model’s structure and do not have to be
added later.

2+1 dimensional space is the simplest, non-trivial example, so we will
begin there. To do this, we will define a function ϕ(X) such that at each
point X in space time where a string exists:

ϕ(X) = 0

Our next goal will then be to find the surface area of the level curves of
this function. We only want points where the function is zero to contribute,
so we can try including a delta function of the field. We multiply this by an as
yet undetermined function of the derivatives of the field. It is only a function
of the derivatives of ϕ, because everywhere the integrand is non-zero, the
field is zero.

A[ϕ] =

∫ tf

ti

∫
Ω

Λ(∂ϕ)δ(ϕ) dA dt

We can now try to find the form of Λ. If the field didn’t change over time
(ϕ̇ = 0), then our integral would simplify:

A[ϕ] = (tf − ti)

∫
Ω

Λ(∇ϕ)δ(ϕ)dA

The integral is evaluated now only on a single time slice and can be seen
as the total length of the collection of strings on that slice. That, multiplied
by our change in time (tf − ti = ∆t), gives us the total relativistic surface
area of the strings.

Next, we will break up space into many small regions {Ωn} and assign
each one a point x⃗n ∈ Ωn. Each of the Ωn is picked to be small enough that
ϕ is approximately linear within the region.

ϕ(x⃗) ≈ ϕ(x⃗n) + (x⃗− x⃗n) · ∇⃗ϕ(x⃗n) ∀x ∈ Ωn

We can rewrite our integral as a sum over the individual regions. We will
also define shifted integration variables y⃗ = x⃗− x⃗n.

A[ϕ] = ∆t
∑
n

∫
Ωn

Λ(∇ϕ(xn + y))δ(ϕ(x⃗n) + y⃗ · ∇⃗ϕ(x⃗n))dy1dy2
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We can now evaluate each of these integrals separately. We will invent
a new pair of coordinates that are rotated such that one, y∥, is parallel to

∇⃗ϕ and the other,y⊥, is perpendicular to it. Since all we did was rotate the
coordinates in space, dy1dy2 = dy∥dy⊥. The dot product of y with ∇⃗ϕ is

simply y∥∥∇⃗ϕ∥. Plugging this in, we get:

A[ϕ] = ∆t
∑
n

∫
Ωn

Λ(∇ϕ(xn + y))δ(ϕ(x⃗n) + y∥∥∇⃗ϕ∥)dy∥dy⊥

Carrying out the integral over y∥ yields:

A[ϕ] = ∆t
∑
n

∫
Λ(∇ϕ(xn + y))

∥∇⃗ϕ∥
dy⊥ |y∥=0

The integral is performed along the small segment of the curve ϕ = 0
contained inside Ωn. Adding all our regions back together this gives us a line
integral over the curve ϕ = 0.

A[ϕ] = ∆t

∮
ϕ(x⃗)=0

Λ(∇ϕ)

∥∇⃗ϕ∥
ds

If we want the integral to represent the length of the curve, the integrand
should clearly be 1. This finally allows us to pin down a form for Λ!

Λ(∇ϕ) = ∥∇⃗ϕ∥

This gives us an explicit action for the case where ϕ̇ = 0:

S[ϕ] =

∫
k∆t∥∇⃗ϕ∥δ(ϕ)d2x

Finding the general form turns out to be surprisingly easy. There is really
only one way to write a relativistically invariant function of ∂µϕ that reduces

to ∥∇⃗ϕ∥ when ϕ̇ = 0. Here, we are using the mostly negative form of ηµν .√
∥∇⃗ϕ∥2 − ϕ̇ or equivalently

√
−∂µϕ∂µϕ

Plugging this in, we’ve found the general form for our action!

S[ϕ] =

∫
k
√

−∂µϕ∂µϕ δ(ϕ)dX
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Before we dive into exploring the properties of this action, we’ll do two
quick example calculations to see if they give reasonable results. The first
example is that of a string stretched along the x2-axes from −∞ to +∞ and
moving along the x1 axes. Since our x1 coordinate is changing as a function
of time, we can write:

X(t) = x1 or 0 = X(t)− x1

This has the form ϕ(x1, t) = 0 which means that X(t) − x1 can serve as
ϕ in our model. All we need to do to find X(t) is plug it into our formula for
the action.

−∂µϕ∂
µϕ = 1− Ẋ2

S[X] =

∫
k
√

1− Ẋ2 δ(X(t)− x1)dx1dx2dt

Integrating over x1 and moving around our integral over x2 we get:

S[X] =

∫ (∫
k dx2

)√
1− Ẋ2 dt

This is just the action for a relativistic particle of total mass −
∫
k dx2!

This gives us our better physical meaning for the constant k. It is the negative
of the mass density of the strings k = −µ. From here on, I will be writing
the action in terms of µ instead of k as it has more physical meaning.

We will do one more slightly less trivial example: that of a circular string.
We will do something very similar to what we did before when defining X(t),
but now we will define R(t) =

√
x2
1 + x2

2 = r which implies ϕ(r, t) = R(t)−r.
We can then plug this in to find the action. I have skipped the intermediate
steps and jumped right to the final result.

S[R] =

∫
−µR

√
1− Ṙ2 dt

We can then use the Euler Lagrange Equations to find R.

d

dt

(
RṘ√
1− Ṙ2

)
+
√

1− Ṙ2 = 0

When I first tried this problem, I used conservation of energy to make
it first order, then went about solving it mechanically. It was anything but
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easy. The simpler way is to notice that the form of
√
1− Ṙ2 seems to lend

itself to a solution in terms of sine or cosine. I have since come up with a
third way of solving this, by far my favorite, which includes a Wick rotation
and the fact that hanging strings make hyperbolic cosine graphs. This is
included in my video. For now we’ll go with the second method, plug in
R = α sin(βt+ γ) and see what we get (I’m defining θ = βt+ γ for the sake
of fitting the equation on the page).

d

dt

 α2β sin(θ) cos(θ)√
1− α2β2 cos(θ)2

+

√
1− α2β2 cos(θ)2 = 0

This is satisfied if αβ = 1. Thus we have:

R(t) = α sin

(
t

α
+ γ

)
This is a two parameter family of solutions to a second order differential

equation, so we can be reasonably confident it represents the entire solution
set. There are a few interesting things to note about this solution. First of
all, its physical characteristics are determined by only a single number α: the
maximum radius. The other constant, γ, is a purely mathematical construct
related to when we start counting time.

Second of all, it is pretty clear that the solution only makes sense for
t ∈ [−αγ, α(2π + γ)]. Outside of that interval, our solution gives a negative
radius. At the point when the radius equals zero, the string’s inward velocity
Ṙ approaches the speed of light. This is a kind of singularity. The total
energy of the string must stay constant, while the radius (and thus the length)
of the string approaches zero. This means that the energy density of the
string blows up to infinity as the string shrinks.

Over the last month or so I’ve been trying to show that this singularity
happens for all collections of strings of finite size in 2+1 dimensional space, or
that there are some configurations that avoid it. For now, I haven’t been able
to show either. My attempt has centered around checking whether the area
encompassed by the collection of strings must shrink to zero. The change in
area does have a very simple form: the integral of ϕ̇δ(ϕ) over all space. I
haven’t yet been able to show what this implies.

For now, we can use the Euler Lagrange equations to find a general equa-
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tion of motion for our system.

∂

∂Xµ

∂L
∂
[

∂ϕ
∂Xµ

] = ∂L
∂ϕ

∂

∂Xµ

[
−∂µϕ δ(ϕ)√
−∂µϕ∂µϕ

]
=
√

−∂µϕ∂µϕ δ′(ϕ)

Amazingly, when we expand it, all the terms multiplying δ′(ϕ) cancel,
leaving:

[∂µϕ∂νϕ∂
µ∂νϕ− ∂σϕ∂σϕ∂

τ∂τϕ]δ(ϕ) = 0

There are multiple ways to satisfy this equation. Perhaps the easiest is
to constrain ϕ more, restricting ourselves to ϕ for which the part multiply-
ing the delta function is zero at all points, not just when the delta function
itself is non-zero. This is still a second order, non-linear partial differential
equation. It is anything but easy to solve.

So far, we have only studied strings in 2+1 dimensions but I’ll conclude
by generalizing our action to D+1 dimentional space. The action will now be
a functional of D-1 functions {ϕn}. The string exists at all points X where:

ϕn(X) = 0 ∀n

Just like before, we only want points where the string exists to contribute
to the action, so we will write it as a delta function multiplied by a function
of the derivatives of all the ϕn.

S =

∫ tf

ti

∫
Ω

Λ({∂ϕn})
∏
n

δ(ϕn) dxi dt

Like last time, we first consider the case where the string is stationary
(ϕ̇ ≡ 0 ∀n).

S = ∆t

∫
Ω

Λ({∇ϕn})
∏
n

δ(ϕn) dxi

Then, we break up omega into many sub-regions Ωα (small enough that
all the ϕα are approximately linear over the regions) and pick corresponding
points xα ∈ Ωα, then split up our integral.

S = ∆t
∑
α

∫
Ωα

Λ({∇ϕn(x)})
∏
n

δ(ϕn(x)) dxi
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Like last time, we define new integration variables in each of our regions
({y∥n}, y⊥). These are shifted so that the new origin corresponds to xα, and
all but one of the unit vectors (unit both in the new and old system) point
along the D-1 gradients of the ϕn, while the last one is perpendicular to all
of them. We can write our new volume element in terms of the derivatives
of ϕ where ϵ is the completely antisymmetric tensor.

dx =
∂{xi}
∂{yi}

dy∥ dy⊥ =

∏
n ∥∇ϕn∥∑

{in} ϵ
i1i2i3···

∏
n

∂ϕn

∂xin

dy∥ dy⊥

Next we will plug this into our integral and simultaneously make the
assumption that all the ϕn are approximately linear in the regions Ωα. This
gives us:

S = ∆t
∑
α

∫
Ωα

Λ({∇ϕn(x)})
∏
n

δ(∥∇ϕn∥y∥n)
∏

n ∥∇ϕn∥∑
{in} ϵ

i1i2i3···
∏

n
∂ϕn

∂xin

dy∥ dy⊥

Integrating over all of the y∥n cancels the product in the numerator of our
volume element, giving us:

S = ∆t
∑
α

∫
Ωα,ϕ=0

Λ({∇ϕn(x)})∑
{in} ϵ

i1i2i3···
∏

n
∂ϕn

∂xin

dy⊥

Each of these is an integral over the small and approximately straight
segment of string contained in each of the Ωα. I haven’t explicitly written
it out, but if there was no point in a given Ωα where ϕn = 0 ∀n, then the
integrand for that Ωn would instead be zero. Like last time, adding all of the
Ωα back together yields a line integral over the strings.

S = ∆t

∮
ϕ(x⃗)=0

Λ({∇ϕn})∑
{in} ϵ

i1i2i3···
∏

n
∂ϕn

∂xin

ds

If we want this to be proportional to the total length of all the strings,
the integrand needs to be constant. We can write it in terms of µ, the mass
density of the string. This finally lets us pin down a form for Λ!

Λ({∇ϕn}) = −µ
∑
{in}

ϵ{in}
∏
n

∂ϕn

∂xin
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We can plug this into our action in terms of Λ to find the action of a
stationary string.

S = ∆t

∫
Ω

−µ
∑
{in}

ϵ{in}
∏
n

∂ϕn

∂xin

δ(ϕn)d
3x

It’s much less obvious than last time, but there is still basically only one
relativistically invariant function of the derivatives of the ϕn that reduces
to the above integrand when ϕ̇n = 0 (The first picture on my website is
me showing how this reduces to the above action for a stationary string).
Substituting this into our integral, we’ve found the total action for a collection
of relativistic strings in D+1 dimensional space!

S =

∫ tf

ti

∫
Ω

−µ

√√√√ϵµ{βn}ϵµ{αn}

D−1∏
n

∂ϕn

∂xαn

∂ϕn

∂xβn

D−1∏
n

δ(ϕn)d
3x

If we solve for our equations of motion using the Euler Lagrange equations,
we again find that all the terms containing δ′(ϕn) cancel, and we get a single
equation multiplied by a delta function of the field.

∀j

[∏
n

δ(ϕn)

]
∂

∂xαj

ϵµ{βn}ϵµ{αn}

(∏D−1
n̸=j

∂ϕn

∂xαn

∂ϕn

∂xβn

)
∂ϕj

∂xβj√
ϵµ{βn}ϵµ{αn}

∏D−1
n

∂ϕn

∂xαn

∂ϕn

∂xβn

 = 0

If we mandate that everywhere, not just ϕn = 0, the field follows this
equation, we can write the evolution of ϕ as a field equation with no delta
functions. It’s worth remarking how amazing it is that for all dimensions,
terms containing derivatives of δ cancel. This was far from what I expected.
So far this is the only action I’ve found that includes a delta function where
this happens. Proving that this is the only action where the higher order
derivatives of delta functions cancel is another project I’ve been working on.

Though everything written here was done classically, in the future I hope
to quantize this model. I’ve been working on this from two angles. The first is
to plug the action (delta function and all) into the path integral. The second
is to treat the field equation I derived as a quantum field, then look for level
curves using a delta function of the field operator. I’ve also been looking
into representing higher dimensional shapes and open strings with similar
models.

8


