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I first learned Quantum Mechanics through Leonard Susskind’s Theoreti-
cal Minimum books. It was fascinating, but I wasn’t entirely satisfied with it.
I already knew the basics of special relativity when I read the book, and the
quantum mechanics that Susskind described was inherently non-relativistic. I
had an intense curiosity about how to make quantum mechanics relativistic.
This began both my work in the Path Integral (see my other write-up, “De-
riving the Canonical Quantization Approach from the Path Integral”) and
Quantum Field Theory. Early on, I tried to find a formula for how the fields
would evolve in terms of the action. Susskind had already said that free fields
followed wave equations. Unfortunately, I found many many permutations
of the action, state vectors, and the vacuum vector that all reduced to the
equation he had given when applied to a free field. In the end, I just brute-
forced the problem, trying each equation until one started giving reasonable
results. It’s worth noting that everything here is work I did, and wrote up,
in my Junior year. I have since found more efficient methods for some of
this. Still, I thought I’d include it as a kind of “time capsule” of what I was
obsessed with in eleventh grade.

We begin by defining a collection of operators (note here c = ℏ = 1):

ϕn(t), πn(t) | ∀t [ϕn(t), πm(t)] = iδnm

We will also assume the Lagrangian (L) and Hamiltonian (H) have the
following form (here V ({ϕ}) is an arbitrary potential that depends on all the
ϕs):

L =
∑
n

1

2
ϕ̇2
n − V ({ϕ}), H =

∑
n

1

2
ϕ̇2
n + V ({ϕ})
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For this particular choice of Lagrangian and Hamiltonian we are going
to prove that the following familiar equation is equivalent to Heisenberg’s
equation for the time dependence of an operator.

d

dt

∂L
∂ϕ̇n

− ∂L
∂ϕn

= 0 ↔ L̇ = i[H,L]

Though this at first glance might not seem general enough to be useful this
is the form of both the Klein Gordon and Proca Lagrangians. For the sake
of this proof we are going to assume that time evolution unfolds according
to some unitary operator which is a function of all the ϕns and πns:

ϕn(t) = eitU({ϕ},{π})ϕn(0)e
−itU({ϕ},{π}), πn(t) = eitU({ϕ},{π})πn(0)e

−itU({ϕ},{π})

We are trying to show that, given the equation similar to stationary action
above:

U({ϕ}, {π}) = H({ϕ}, {π})

First we write out the least action equation more explicitly in terms of the
Lagrangian. We will divide it into two different equations, one to define the
derivative of the generalized coordinate and the other to define the derivative
of the momenta:

d

dt

∂L
∂ϕ̇n

− ∂L
∂ϕn

= 0 → π̇n = − ∂V

∂ϕn

, ϕ̇n = πn

First, we need to write the first derivative of ϕ and π in terms of U (here ψ
refers to an arbitrary operator, ϕ or π as both have the same time dependence
and ϵ is a infinitesimal change in time small enough that it’s higher powers
are negligible):

ψ(t) = eitUψn(0)e
−itU

ψ(t+ ϵ) = ψ(t) + ϵψ̇(t) = eiϵU(eitUψn(0)e
−itU)e−iϵU

We see that the interior of the parenthesis is just the definition of ψ(t).

ψ(t) + ϵψ̇(t) = eiϵUψ(t)e−iϵU

Expanding out the exponentials to first order in ϵ we get

ψ(t) + ϵψ̇(t) = (1 + iϵU)ψ(t)(1− iϵU)
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ψ(t) + ϵψ̇(t) = ψ(t) + iϵUψ(t)− iϵψ(t)U

Identifying ψ̇ with the component of the right hand side of the expression
proportional to ϵ we see that

ψ̇(t) = i[U, ψ(t)]

This in turn means

π̇n(t) = i[U, πn(t)], ϕ̇n(t) = i[U, ϕn(t)]

To show that the Euler Lagrange equations above are equivalent to the
Heisenberg time dependent operator equations we need to show that U is
equal to the Hamiltonian. To do this we write out the component of the
Euler Lagrange equations defining the change in π in terms of U :

π̇n = − ∂V

∂ϕn

→ [U, πn] = i
∂V

∂ϕn

Next we use the following equation which follows from the definition of
the canonical commutator:

[F ({ϕ, π}), πn] = i
∂F

∂ϕn

Plugging this in and noting that U is a function of all the ϕ’s and π’s we
get:

∂U

∂ϕn

=
∂V

∂ϕn

From this it follows that U has the following form where K({π}) is an arbi-
trary function which depends only on the π’s:

U({π, ϕ}) = K({π}) + V ({ϕ})

This is exactly the form we expect to see if U = H: the potential energy
plus something that depends only on the π’s.

In order to pin down the form of K we need to use the second part of the
Euler Lagrange equations, the part that defines the change in ϕ:

ϕ̇n = πn → −i[ϕn, U ] = πn
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We need to use another equation that follows directly from the canonical,
commutators:

[ϕn, F ({ϕ, π})] = i
∂F

∂πn

Plugging this in we get:

∂U

∂πn
=
∂K

∂πn
= πn

Up to a redundant additive constant this means K has the form:

K({π}) =
∑
n

1

2
π2
n

Plugging this into U we get:

U = K + V =
∑
n

1

2
π2
n + V ({ϕ}) = H

Thus:
U = H

Now that we have shown the Euler Lagrange equations are equivalent to
Heisenberg’s equations for the time evolution of an operator, we can apply
them to a simple quantum field theory. In this case we will use a Klein
Gordon field with mass m. As before we work in natural units: c = ℏ = 1.
The action is defined as follows (here the integral is over all four dimensions
of space-time):

S =

∫
1

2
(∂µϕ∂

µϕ−m2ϕ2)d4X

Before we can leverage the Euler Lagrange equations on this field we need
to do two things. The first is to derive the more useful field theoretic version
of the Euler Lagrange equations from the originals above and the second is
to justify our choice for the fields canonical commutators.

The derivation of the field theory Euler Lagrange equations from the
originals is rather straight forward. First assume that the Lagrangian is

4



the spatial integral over a Lagrangian density (note that from here on, the
Lagrangian will be written L while the Lagrangian density will be L):

L(t) =

∫
L({ϕ(x⃗)}, t)d3x

We then write out the Euler Lagrange Equations using L:

∂

∂t

δL

δϕ̇
− δL

δϕ
= 0

Assuming that L({ϕ, ∂ϕ}) depends only on first derivatives of ϕ we can
make the following two substitutions:

δL

δϕ̇
=
∂L
∂ϕ̇

δL

δϕ
= −

∑
n

∂

∂xn

∂L
∂[ ∂ϕ

∂xn
]
+
∂L
∂ϕ

Plugging this in and using the Einstein summation convention to simplify
our notation (note that here X represents the 4-vector X = (t, x⃗)):

∂

∂Xµ

∂L
∂[ ∂ϕ

∂Xµ ]
− ∂L
∂ϕ

= 0

We will also need to justify our canonical commutators. The standard
canonical commutators for some discrete collection of generalized coordinates
{ϕn} are (remember that L represents the Lagrangian not the Lagrangian
density):

[ϕn,
∂L

∂ϕ̇m

] = iδnm

To generalize this to a continuous field we will need to reinterpret the
partial derivative of the Lagrangian. To do this, we make the following
definition of the partial derivative of a field:

∂

∂ϕ(x⃗)
f(ϕ(y⃗)) =

{
f ′(ϕ(x⃗)) x⃗ = y⃗

0 x⃗ ̸= y⃗

Let’s use this, and the definition of L in terms of L to expand the following
expression. What we are looking for is a form for [ϕ(x), π(y)]:

[ϕ(x⃗),
∂L

∂ϕ̇(x⃗)
] = i
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∫
[ϕ(x⃗),

∂L(y⃗)
∂ϕ̇(x⃗)

]d3xd3y = i

∂L
∂ϕ̇(x⃗)

is only non-zero when x = y so we can substitute x for y in that

part of the expression yielding:∫
[ϕ(x⃗),

∂L(y⃗)
∂ϕ(y⃗)

]d3xd3y = i

From here we use the standard definition for the conjugate momentum of
a field:

π(x⃗) =
∂L
∂ϕ̇

(x⃗)

Plugging this in we get:∫
[ϕ(x⃗), π(y⃗)]d3xd3y = i

However above we just said that the term ∂L
∂ϕ̇

is only non-zero when x⃗ = y⃗

so we have:
x⃗ ̸= y⃗ [ϕ(x⃗), π(y⃗)] = 0

The only function that satisfies these two conditions is:

[ϕ(x⃗), π(y⃗)] = iδ(x⃗− y⃗)

Now that we have that out of the way we can use our equations on the
Klein Gordon field. We plug our definition of the action into the Euler
Lagrange equations:

L =
1

2
(∂µϕ∂

µϕ−m2ϕ2)
∂

∂Xµ

∂L
∂ ∂ϕ

∂Xµ

− ∂L
∂ϕ

= 0

(∂µ∂
µ +m2)ϕ(x⃗) = 0

As expected we get the Klein Gordon equation. To solve this equation
we write the field in terms of it’s Fourier Transform (note that I’ve dropped
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some factors of 2π, had I included them they would have been divided out
later in the analysis):

ϕ(x⃗, t) =

∫
ϕ̂(p⃗, t)eip⃗·x⃗d3p

We can then plug this into the Klein Gordon equation and solve:

0 = (∂µ∂
µ +m2)ϕ(x⃗) = (

∂2

∂t2
−∇2 +m2)ϕ(x⃗)

=

∫
¨̂
ϕ(p⃗, t)eip⃗·x⃗ − ϕ̂(p⃗, t)∇2eip⃗·x⃗ +m2ϕ̂(p⃗, t)eip⃗·x⃗d3p

=

∫
[
¨̂
ϕ(p⃗, t) + |p⃗|2ϕ̂(p⃗, t) +m2ϕ̂(p⃗, t)]eip⃗·x⃗d3p

This equation must hold for all values of x⃗ so we can drop the integral
and evaluate for each momentum state individually:

¨̂
ϕ(p⃗, t) + |p⃗|2ϕ̂(p⃗, t) +m2ϕ̂(p⃗, t) = 0

¨̂
ϕ(p⃗, t) = −(|p⃗|2 +m2)ϕ̂(p⃗, t)

This is just the equation for a simple harmonic oscillator with frequency√
|p⃗|2 +m2 which has solutions:

ϕ̂(p⃗, t) = A(p⃗)eit
√

|p⃗|2+m2
+B(p⃗)e−it

√
|p⃗|2+m2

We will simplify this expression by calling the frequency E. Thus:

ϕ̂(p⃗, t) = A(p⃗)eitE +B(p⃗)e−itE

We can then plug this back into our original form for the field operator:

ϕ(x⃗, t) =

∫
A(p⃗)eiEt+ip⃗·x⃗ +B(p⃗)e−iEt+ip⃗·x⃗d3p

We can then do a little rearranging, namely reversing the order over which
we integrate the term involving B(p⃗):

ϕ(x⃗, t) =

∫
A(p⃗)eiEt+ip⃗·x⃗ +B(p⃗)e−iEt+ip⃗·x⃗d3p
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=

∫
A(p⃗)eiEt+ip⃗·x⃗d3p+

∫
B(p⃗)e−iEt+ip⃗·x⃗d3p

=

∫
A(p⃗)eiEt+ip⃗·x⃗d3p+

∫
B(−p⃗)e−iEt−ip⃗·x⃗d3p

=

∫
A(p⃗)eiEt+ip⃗·x⃗ +B(−p⃗)e−iEt−ip⃗·x⃗d3p

To simplify our notation we can recognize that the term in the exponent is
just the product of two 4-vectors, X and a new vector P defined P = (E, p⃗):

ϕ(X) =

∫
A(p⃗)eiPµXµ

+B(−p⃗)e−iPµXµ

d3p

Next we explicitly enforce the fact that the field ϕ(X) is a hermitian
operator:

ϕ†(X) = ϕ(X)∫
A(p⃗)eiPµXµ

+B(−p⃗)e−iPµXµ

d3p =

∫
A†(p⃗)eiPµXµ

+B†(−p⃗)e−iPµXµ

d3p

Thus we can see:
A†(p⃗) = B(−p⃗)

We can then plug this into our expression for the field to write it entirely
in terms of the set of operators A(p⃗). In this form it is explicitly hermitian as
it is written in as the sum of an operator and it’s hermitian conjugate. Note
that we are still integrating over d3p and not over d4P as the 0th component
of the momentum 4-vector still depends on the others:

ϕ(X) =

∫
A(p⃗)eiPµXµ

+ A†(p⃗)e−iPµXµ

d3p

Now that we have a form for ϕ(X) in terms of our new operator A(p⃗)
we need to find the commutators of A. We are doing this because we are
trying to find the particle creation and annihilation operators which should
be hidden somewhere in the field.

We will do this by enforcing the canonical commutators while making two
simplifying assumptions, namely that the only non-zero commutators those
with an A and an A† of the same momentum. This is of course only a guess
and it will eventually be justified by the form we find for the energy. If the en-
ergy didn’t reproduce the time dependence we’d found for A then we’d know
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that our assumptions had been inconsistent. As we will soon see they are not.

First we write out the canonical commutators for the field in position
space:

[ϕ(x⃗), ϕ̇(y⃗)] = iδ3(x⃗− y⃗)

We then plug in our form for the field in terms of A and simplify using
the assumptions mentioned above:

iδ3(x⃗− y⃗) =

∫ ∫
2iE[A(p⃗), A†(q⃗)]ei(p⃗·x⃗−q⃗·y⃗)d3pd3q

This expression must only depend on x⃗− y⃗ and no other combination so
this means [A(p⃗), A†(q⃗)] must be 0 whenever p⃗ ̸= q⃗. We can thus make the
following definition:

[A(p⃗), A†(q⃗)] = F (p⃗)δ3(p⃗− q⃗)

To find a form for F we plug it back into the above expression. Note that
I’ve canceled the i on both sides of the expression:

δ3(x⃗− y⃗) =

∫
2EF (p⃗)eip⃗·(x⃗−y⃗)d3p

In order for this integral to evaluate to the dirac delta our commutator
must be:

[A(p⃗), A†(q⃗)] =
1

16π3E

We are looking for raising and lowering operators which have commutator
1. To this end we do the following manipulation:

[(4
√
π3EA(p⃗)), (4

√
π3EA(p⃗))†] = 1

We can call the new operator ψ(p⃗) and rewrite the field in terms of it:

ψ(p⃗) = 4
√
π3EA(p⃗)

ϕ(X) =

∫ [
ψ(p⃗)ei(PµXµ) + ψ†(p⃗)e−i(PµXµ)

] d3p

4
√
π3E

Though the ψs have the right commutators for creation and annihilation
operators we are not done. We need to show that the operator they raise
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and lower is the energy and that they raise/lower by the right amount to
be adding/removing particles. To do this, we will write out the energy in
terms of ψ by using our definition of ϕ. The calculation is very long and not
particularly enlightening so I will only show the end result here:

H =

∫
Eψ†(p⃗)ψ(p⃗)d3p

We have one more thing to do before we’re done. We need to justify our
assumptions from earlier about the form for the commutators of A and thus
those of ψ. To do this, we can calculate the first derivatives of the ψs using
Heisenbergs formula for time evolution. If it agrees with what we already
have, than our assumptions were consistent.

ψ̇(p⃗) = i[H, ψ(p⃗)] = −iEψ(p⃗)

This is the exact same equation we derived earlier for the time dependence
of A. Thus the assumptions we made earlier related to the commutators of
the ψs were correct.

Finally we can analyze the form we’ve found for the energy. The term in
the middle is the number operator whose eigenvalues are raised and lowered
by the ψs. We can interpret this as the number of particles of momentum p⃗.
This is then multiplied by the energy of each of the particles. This is exactly
the energy we would expect for a collection of non-interacting relativistic
particles!

This is one of my favorite problems I’ve solved. It blows my mind that
it’s possible to start with the Klein Gordon equation, an equation for fields,
and end up with a Hamiltonian that describes particles
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